QUESTION 2018

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following:
- i) If $\Delta = abc + 2fgh af^2 bg^2 ch^2$, then the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of straight lines if

a)
$$\Delta > 0$$

b)
$$\Delta < 0$$

$$\checkmark$$
c) $\Delta = 0$

d) none of these

- i) if the matrix $\begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ \lambda & -3 & 0 \end{pmatrix}$ is singular then the value of λ is

a) 0

b) 4

(c) 2

ii) If A be a matrix whose inverse exists then which of the following is not true?

- a) $(A^T)^{-1} = (A^{-1})^T \checkmark b) A^{-1} = (\det A)^{-1}$ c) $(A^2)^{-1} = (A^{-1})^2$
- d) none of these

- M) $\frac{\partial}{\partial x}(e^{xy}) =$
 - a) e"

b) ren

(c) year

d) none of these

v) The degree of the function $f(x, y) = \tan^{-1} \frac{y}{x}$ is

a) 1

d) none of these

vi) The inverse of the matrix $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$ is

- $\checkmark a) \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix}$ c) $\frac{1}{3} \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$
- d) none of these

vii) The value of $\int \frac{dx}{x \log x}$ is

- a) $\log |x| + c$
- \checkmark b) $\log \log x + c$
- c) $x \log |x| + c$
- d) none of these

viii) If α , β and γ be the roots of the equation $x^3 + 7x - 2 = 0$ then $\sum \alpha^2 =$

a) D

b) 14

d) 4

(x) Which of the following is a null set?

a) A = [0]

- b) $A = \{\phi\}$
- \checkmark c) $A = \{x: x \text{ is an integer & } 1 < x < 2\}$ d) none of these

POPULAR PUBLICATIONS

- x) The value of $\lim_{x\to 0} \frac{\sin x}{x}$ (where x is radian) is

C) 00

d) -1

- xi) The conic $\frac{1}{-}=1-e\cos\theta$ represents a parabola if
 - faje=1 bje>1

c) e<1

d) none of these

- xii) What is the value of the following limit, $\lim_{x\to 0} (1+x)^{1/x}$?
 - a 1

1b) e

c) 0

d) none of these

Group - B (Short Answer Type Questions)

2. Evaluate the integral $\int_{\frac{1}{100}}^{\frac{1}{100}} \frac{\sin x}{x + \cos x} dx$.

See Topic: DEFINITE INTEGRALS, Short Answer Type Question No. 3.

3. Express 2 3 0 as the sum of a symmetric and a skew-symmetric matrix.

See Topic: MATRICES, Short Answer Type Question No. 6.

4. If $u = \tan^{-1} \frac{x+y}{\sqrt{x+\sqrt{y}}}$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{4} \sin 2u$.

See Topic: FUNCTIONS OF SEVERAL VARIABLES, Long Answer Type Question No. 3.

- 5. Solve the equation $x^3 9x^2 + 14x + 24 = 0$ two of whose roots are in the ratio 3:2. See Topic: POLYNOMIAL, Short Answer Type Question No. 16.
- 6. Prove that the set of real numbers of the form $a+b\sqrt{2}$ where a and b are rational numbers, forms a field under addition and multiplication.

See Topic: BINARY COMPOSITION, Short Answer Type Question No. 5.

Group = C (Long Answer Type Questions)

- (a) State Decartes' rule of eign. Using this rule find the nature of the root of the equation $x^2 7x^3 + 21x^2 = 9x + 21 = 0$.
- b) Save the following system of linear equations by Cramer's rule;

ed it by a transformation of rectangular axis to another with same origin the expression ux+by

changes to
$$a'x'+b'y'$$
, prove that $a^2+b^2=a'^2+b'^2$.

- at See Topic: POLYNOMIAL, Long Answer Type Question No. 10.
- b) See Topic: MATRICES, Long Answer Type Question No. 12.
- e) See Topic: TRANSFORMATION OF CO-ORDINATES, Long Answer Type Question No. 11.
- 8. a) If G be a group such that $(ab)^2 = a^2b^2 \forall a, b \in G$, show that the group G is Abelian.

b) Show that
$$\int_{0}^{1} \frac{\log(1+x)}{1+x^{2}} dx = \frac{\pi}{8} \log 2$$
.

- e) If $y = e^{-x} \sin x$, then show that $y_4 + 4y = 0$.
- a) See Topic; BINARY COMPOSITION, Short Answer Type Question No. 6.
- b) See Topic: DEFINITE INTEGRALS, Short Answer Type Question No. 10.
- e) See Tople; SUCCESSIVE DIFFERENTIATION, Short Answer Type Question No. 9.
- 9, a) Show that the matrix $A = \frac{1}{3} \begin{pmatrix} -1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ is orthogonal and hence find A^{-1} .
- b) If $A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, then show that $A^2 2A + I_2 = O_2$. Hence obtain A^{-1} and also find A^{100} .
- c) Reduce the following equation to the canonical form and determine the nature of the conic represented by it: $8x^2 12xy + 17y^2 + 16x 12y + 3 = 0$.
- a) & b) See Topic: MATRICES, Long Answer Type Question No. 13.
- c) See Topic: GENERAL EQUATION OF SECOND DEGREE, Long Answer Type Question No. 1.
- 10. a) Solve the equation $x^3 3x^2 + 12x + 16 = 0$ by Cardan's method.
- b) Prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
- c) If α, β, γ are the three roots of $x^3 + px^2 + qx + r = 0$, obtain the value of $\sum (\alpha \beta)^2$.

POPULAR PUBLICATIONS

- a) See Topic: POLYNOMIAL, Long Answer Type Question No. 11.
- b) See Topic: SET THEORY, Short Answer Type Question No. 7.
- c) See Topic: POLYNOMIAL, Long Answer Type Question No. 6.
- 11. a) State Rolle's theorem. Examine whether Rolle's theorem is applicable or not for the function f(x) = 1 |x 1|, $\forall x \in [0, 2]$.
- b) If $u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.
- c) Find for what values of x, the following expression is maximum and minimum respectively: $2x^3 21x^2 + 36x 20$.
- a) See Topic: EXPANSION OF FUNCTIONS, Short Answer Type Question No. 8.
- b) See Topic: FUNCTIONS OF SEVERAL VARIABLES, Long Answer Type Question No. 4.
- c) See Topic: MISCELLANEOUS, Long Answer Type Question No. 2.